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We study the extremal dynamics emerging in an out-of-equilibrium one-dimensional Jepsen gas of �N+1�
hard-point particles. The particles undergo binary elastic collisions, but move ballistically in between colli-
sions. The gas is initially uniformly distributed in a box �−L ,0� with the “leader” �or the rightmost particle� at
X=0, and a random positive velocity, independently drawn from a distribution ��V�, is assigned to each
particle. The gas expands freely at subsequent times. We compute analytically the distribution of the leader’s
velocity at time t, and also the mean and the variance of the number of collisions that are undergone by the
leader up to time t. We show that in the thermodynamic limit and at fixed time t�1 �the so-called “growing
regime”�, when interactions are strongly manifest, the velocity distribution exhibits universal scaling behavior
of only three possible varieties, depending on the tail of ��V�. The associated scaling functions are entirely
different from the usual extreme-value distributions of uncorrelated random variables. In this growing regime
the mean and the variance of the number of collisions of the leader up to time t increase logarithmically with
t, with universal prefactors that are computed exactly. The implications of our results in the context of
biological evolution modeling are pointed out.
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I. INTRODUCTION

The study of the statistics of the maximum or the mini-
mum of a set of random variables, generally referred to as
the extreme-value statistics �EVS�, is important in diverse
areas including disordered systems such as spin-glasses �1�
and directed polymers �2–4�, turbulent flows �5�, sorting and
search problems in computer science �6–8�, fluctuating inter-
faces �9–15�, granular matter �16�, growing networks �17�,
and models of biological evolution �18–21�. The theory of
EVS is simple and well-understood �22,23� when the N ran-
dom variables V1, V2 , . . . ,VN are statistically uncorrelated
and each of them is drawn from the same common parent
distribution ��V�. Their maximum

Vmax = max�V1,V2, . . . ,VN�

is a random variable whose probability density P�V ,N�dV
=Prob�V�Vmax�V+dV ,N� is known to have a scaling form
for large N,

P�V,N� �
1

b̃i�N�
Gi�V − ãi�N�

b̃i�N�
�, i = I,II,III. �1�

Here the subscript i refers to the three types of tails of the
parent distribution ��V�, namely:

�I� a tail decaying faster than a power law, such as ��V�
�V� exp�−V�� when V→	, with �
0;

�II� a power-law tail, such as ��V��V−� as V→	, where
�
2; and

�III� a bounded distribution, such as ��V�� �Vc−V�� when
V→Vc

−, with �
0.
The functions ãi�N� and b̃i�N� are nonuniversal scale fac-

tors that depend on the details of ��V�. However, the scaling
functions Gi�z� are universal �22,23�, in the sense that they
are only of three possible varieties, depending on the three
classes I, II, and III, but are otherwise independent of the
details of ��V�. These universal functions are known, respec-
tively, as �I� Fisher-Tippett-Gumbel, �II� Fréchet, and �III�
Weibull distributions.

In contrast to the above case of independent identically
distributed �i.i.d.� stochastic variables, the EVS is much less
understood when there are correlations or interactions be-
tween the random variables. In the presence of static inter-
actions, exact results for the EVS are known only in a few
cases, such as for fluctuating �1+1�-dimensional interfaces
in their steady states �13–15� and for a class of directed poly-
mer problems �2–4�. In this paper, we present exact
asymptotic results for the EVS in an interacting particle sys-
tem, for which the interactions between the random variables
are manifest dynamically. Our system is a one-dimensional
gas consisting of �N+1� identical hard-point particles that
undergo binary elastic collisions. At these instantaneous col-
lisions the particles thus merely exchange their velocities,
while in between collisions they move freely. Due to the
simplicity of the dynamics, this so-called Jepsen gas often
admits analytical treatments for various externally imposed
constraints, and hence has a rather rich history, see, e.g.,
�24–30�. It has also proved very useful in the study of a class
of out-of-equilibrium problems such as the evolution of the
“adiabatic piston” �31–34�, the Jarzynksi theorem �35�, and a
quasispecies biological evolution model �19–21�. Moreover,
the Jepsen gas also turns out to have important applications
in spin transport processes in the one-dimensional nonlinear
� model �36,37�.
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We start from an initial condition at t=0 where the Jepsen
gas of �N+1� particles occupies the interval �−L ,0� on the
real x axis. The extreme-right “zero”-th particle, that we shall
conventionally call hereafter the leader, is initially located at
X0=0. The coordinates Xi, i=1, . . . ,N of the N particles to
the left of the leader are uniformly distributed in the interval
−L�x�X0=0. Thus the gas has a uniform initial density
n0=N /L. The initial velocities Vi, i=0, . . . ,N of the leader
and of the other N particles are independent random vari-
ables, identically distributed according to the parent distri-
bution ��V�. For simplicity, we restrict ourselves here to the
case of positive velocities, i.e., such that ��V�=0 for V�0.
No boundaries affect the dynamics of the system, which is
simply a free expansion. As the system evolves in time, the
particles collide elastically and exchange their velocities. For
a given initial condition, the system up to time t is fully
described by the set of trajectories �Xi+Vit , i=0,1 , . . . ,N	.
Each of the particles travels along such a trajectory until it
collides with another particle, and each collision changes its
trajectory. In particular, the velocity of the leader increases
whenever it collides with a particle with higher velocity
coming from its left, see Fig. 1. For a fixed particle number
N, it is obvious that if one waits for a long enough time, then
the leader will acquire the largest velocity of the initial set
�Vi , i=0,1 , . . . ,N	. Once this happens, the trajectory of the
leader remains unchanged for all subsequent times.

In the context of biological evolution of quasispecies, this
model was first introduced and studied in Ref. �19�. The
population ni�t� of the ith genotype or species increases ex-
ponentially with time, ni�t�=ni�0�exp�Vit� where the effec-
tive rate of reproduction Vi0 defines its “fitness.” The
logarithmic variable Xi�t�=ln�ni�t��=Xi�0�+Vit can then be
interpreted as the ith trajectory of a Jepsen gas. At t=0 the
rightmost particle with X0=0 and velocity V0 is the most
fitted genotype; however, if V0 is not the maximal of the
initial velocities, then it will be overtaken successively by
better fitted genotypes. At each of these overtaking events
the velocity of the leader changes instantaneously by a finite
amount, i.e., the fitness of the leading genotype increases
discontinuously. These overtaking events thus represent the

so-called punctuation events in the general context of evolu-
tion �18�. The important observable here is the number of
leading genotype changes up to time t, i.e., the number of
collisions that the leader undergoes up to time t. In particular,
the total number of punctuation events until the emergence
of the eventual “absolute” leader genotype exhibits universal
dependencies on the system size N that were investigated
numerically in Refs. �19,20� and recently analytically in Ref.
�21�.

The goal of this paper is to compute analytically two
physical quantities of principal interest, namely:

�a� the probability density of the velocity of the leader
P�V , t ,N� at any time t, and for a fixed number �N+1��1 of
particles, and

�b� the mean and the variance of the number of collisions
undergone by the leader �i.e., the number of leader’s trajec-
tory changes� up to a finite time t.

It is clear that in this system, as long as N�1 is finite,
there is a natural time scale t*�N��1 that denotes the time
taken by the final trajectory of the leader to emerge. For
t
 t*�N�, the leader velocity does not change anymore, and
as such the leader follows on the trajectory corresponding to
the maximum of the initial velocities. Therefore there are
obviously two temporal regimes separated by the crossover
time scale t*�N�, namely the growing regime and the station-
ary regime.

The stationary regime �t
 t*�N��1�. In this regime, the
leader’s trajectory remains unchanged for all subsequent
times. The probability density of the leader velocity
P�V ,N , t� thus becomes time-independent for t
 t*�N��1,
and it is given by the probability density P�V ,N� of the
maximum of the initial velocities. Since the initial velocities
are i.i.d., P�V ,N� satisfies the scaling form in Eq. �1�, where
the scaling function Gi�z� has one of the three universal
forms �Fisher-Tippett-Gumbel, Fréchet, or Weibull�, depend-
ing on the tail of ��V�. Thus one obtains this regime by
taking the t→	 limit, but keeping N�1 fixed. The interac-
tions between particles, which are manifest only dynami-
cally, become completely irrelevant in this regime for the
velocity distribution of the leader.

The growing regime �1� t� t*�N��. In this regime the in-
teractions play an important role, and thus the velocity dis-
tribution of the leader P�V , t ,N� is nontrivial. Since
t� t*�N�, the finiteness of the system does not affect the
leader dynamics; as such, one can study this regime by fixing
t and taking the thermodynamic limit, i.e., the N→	 limit �at
fixed n0=N /L�. One can show that the leader velocity distri-
bution approaches an N-independent form P�V , t�. In addi-
tion, for t�1 �still in the thermodynamic N→	 limit�,
P�V , t� has a scaling form

P�V,t� �
1

bi�t�
Fi�V − ai�t�

bi�t�
�, i = I,II,III, �2�

where the index i=I , II , III refers to the three types of tails of
the parent distribution ��V� as mentioned before. The func-
tions ai�t� and bi�t� are nonuniversal scale factors that depend
on the details of ��V�, but the scaling functions Fi�z� are
universal and are of one of three types I, II, and III, but are

x

t
0

V
0

V
2

V
3

V
5

X
1.

.

.
X

5

. .
.

FIG. 1. A realization of the trajectories for N=5 particles plus
the leader. The thick line indicates the trajectory of the leader, and
the labeled arrows refer to the successive values of its velocity. The
points where the leader trajectory gets modified through collisions
are indicated by the big, black dots. The thin lines correspond to the
trajectories of the other particles.
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otherwise independent of the details of ��V�. Moreover, the
scaling functions Fi�z� are different from the scaling func-
tions Gi�z� in Eq. �1� that characterize the EVS of i.i.d ran-
dom variables. The exact forms of the scaling functions Fi�z�
are detailed in the next section.

We have also computed analytically the mean and the
variance of the number of collisions nc�t ,N� undergone by
the leader up to time t in a system with �N+1��1 particles.
In the stationary regime t
 t*�N��1, it is already known that
the statistics of nc�t ,N� becomes time-independent and
present universal N-dependence �19–21�. More precisely,

nc�N����i ln�N�, i=I , II , III for large N, where the prefactor
�i is universal and its value is specific to each of the three
classes i=I , II , III. This result was first conjectured in Ref.
�19� and was proved later on analytically in Ref. �21�.

In this paper, we compute 
nc�t ,N�� in the growing regime
�1� t� t*�N�� and show that the corresponding mean num-
ber of collisions is independent of N for large N, and grows
universally with time as 
nc�t����i ln�n0t�, i=I , II , III, where
n0 is the initial density, and the prefactor �i is universal and
dependent on the type of tail of ��V�. Similar universal re-
sults are also derived for the variance of nc�t ,N� in the grow-
ing regime �see Secs. II and IV for details�.

The paper is organized as follows. First, for ready refer-
ence, we present in Sec. II a summary of our main results. In
Sec. III, we compute the velocity distribution of the leader
and provide exact asymptotic results. Section IV discusses
the statistics of the number of collisions undergone by the
leader up to time t. In Sec. V we provide, for illustration, the
full analytical results for a particular choice of ��V�. Finally,
we conclude with a summary and outlook in Sec. VI. To
facilitate the reading, most of the lengthy calculations are
relegated to Appendixes A–D.

II. SUMMARY OF THE MAIN RESULTS

In this section, we summarize our main results for
�a� the velocity distribution of the leader, and
�b� the mean and the variance of the number of collisions

undergone by the leader up to time t.

A. The asymptotic velocity distribution of the leader

As mentioned in the Introduction, the asymptotic velocity
distribution of the leader, both in the stationary as well as in
the growing regime, is universal, in the sense that it depends
only on the tail of the parent distribution ��V�. As such, three
different universality classes emerge. We summarize below
these universal behaviors for these three classes.

Class I: Tail decaying faster than a power law as V→	,

�tail�V� = AV�e−V�
�3�

with �
0 and A a constant related to the details �in particu-
lar, the normalization factor� of ��V�. In this case, the cross-
over time scales with N as t*�N��N for large N.

The stationary regime �t� t*�N��1�. The probability den-
sity P�V ,N� of the leader becomes time-independent and is
given by the EVS of the i.i.d. initial velocities. In the limit of

large N �see Sec. IV B for details�, P�V ,N� satisfies the scal-
ing form in Eq. �1� with

ãI�N� � �ln�NA
�
�1/�

,

b̃I�N� �
1

�
�ln�NA

�
��1−��/�

, �4�

and the scaling function is equal to the Fisher-Tippett-
Gumbel probability density function �PDF�,

GI�z� = exp�− z − exp�− z��, − 	 � z � 	 . �5�

The growing regime �1� t� t*�N��. The velocity distribu-
tion P�V , t� of the leader becomes independent of N as
N→	 �with t fixed�, and has the scaling form described in
Eq. �2� with

aI�t� � �ln�n0tA
�2 �1/�

,

bI�t� �
1

�
�ln�n0tA

�2 ��1−��/�

, �6�

and with the universal scaling function

FI�z� = e−z�
−	

z

dUe−e−U
= − e−z Ei�− e−z�, − 	 � z � 	 ,

�7�

where Ei�z� is the exponential-integral function �38�. The
profile of FI�z� is represented in Fig. 2, and its asymptotics
are

FI�z� � ��z − C�e−z for z → 	 ,

exp�− e−z� for z → − 	 ,
� �8�

where C=0.577 215. . . is Euler’s constant. Correspondingly,
the mean asymptotic velocity of the leader increases with
time t as
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FIG. 2. The universal functions FI�z� �with continuous line�,
FII

4 �z� �dashed line�, and FIII
4 �z� �dashed-dotted line�. The superscript

“4” represents the value of the parameter �.
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V�t�� � �ln�n0t��1/�, �9�

and naturally this is also independent on other details of
��V�.

Class II: Power-law-decaying distributions ��V� as
V→	,

�tail�V� = BV−�, �10�

where �
2 in order to ensure the finiteness of the first mo-
ment of ��V�, and B is a constant. In this case the crossover
time t*�N��N��−2�/��−1� for large N, and the leader velocity
distribution has the following asymptotic universal form in
the two regimes.

Stationary regime. The time-independent P�V ,N� satisfies
the scaling form in Eq. �1�, with

ãII�N� = 0,

b̃II�N� � � BN

� − 1
�1/��−1�

, �11�

and the scaling function is the Fréchet PDF,

GII�z� = � �� − 1�
z� exp�−

1

z�−1� for z  0,

0 for z � 0.
� �12�

Growing regime. The leader velocity distribution P�V , t�
becomes independent of N as N→	, and satisfies Eq. �2�
with

aII�t� = 0, bII�t� � � n0tB
�� − 1��� − 2�1/��−2�

. �13�

The universal scaling function FII�z� depends only on the
parameter � �but is otherwise independent of the details of
��V��:

FII
��z� = �� − 1�z−��

z2−�

	

dUU−��−1�/��−2�e−U, �14�

that can also be written as

FII
��z� = �� − 1��� − 2�z−��

0

z

dUe−U2−�
, �15�

and is defined for z� �0,	�. For z�0, FII
��z�=0 trivially. Its

limiting behavior is given by

FII
��z� � �

�� − 1��� − 2�
z�−1 for z → 	 ,

� − 1

z
exp�− z2−�� for z → 0+.� �16�

The mean velocity of the leader increases asymptotically as a
power law,


V�t�� �
� − 1

� − 2
��� − 3

� − 2
�bII�t�

�
� − 1

� − 2
� B

�� − 1��� − 2�1/��−2�

��� − 3

� − 2
�

� �n0t�1/��−2�. �17�

The above expression is finite provided that �
3. Thus al-
though P�V , t� exists for all �
2, its first moment is infinite
for 2���3.

Class III: Distribution ��V� with a finite maximum veloc-
ity Vc,

�tail�V� = C�Vc − V�� for V � Vc, �18�

with �
0. In this case, t*�N��N��+2�/��+1� for large N.
Stationary regime. P�V ,N� satisfies the scaling form of

Eq. �1� with

ãIII�N� = Vc,

b̃III�N� � � CN

� + 1
�−1/��+1�

, �19�

and the scaling function is the Weibull PDF,

GIII�z� = �0 for z  0,

�� + 1��z�� exp�− �z��+1� for z � 0.
� �20�

Growing regime. In this regime, the leader velocity distribu-
tion P�V , t� becomes independent of N as N→	, and satis-
fies to Eq. �2� with

aIII�t� = Vc, bIII�t� = � �� + 1��� + 2�
n0tC 1/��+2�

. �21�

The �-dependent universal scaling function is given by

FIII
� �z� = �� + 1��� + 2��z���

�z�

	

dUe−U�+2
�22�

for z� �−	 ,0�, and FIII
� �z�=0 for z
0. Its limiting behavior

is given by

FIII
� �z� � �

�� + 1�
�z�

exp�− �z��+2� for z → − 	 ,

�� + 1��� 1

� + 2
��z�� for z → 0−. � �23�

The asymptotic mean velocity of the leader approaches the
maximum allowed value Vc as a power law,


V�t�� � Vc −
� + 1

� + 2
��� + 3

� + 2
�bIII�t�

� Vc −
� + 1

� + 2� �� + 1��� + 2�
C 1/��+2�

� ��� + 3

� + 2
��n0t�−1/��+2�. �24�
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B. Collision statistics of the leader

We have also computed analytically the mean and the
variance of nc�t ,N�, the number of collisions undergone by
the leader until a given time t and for a given N�1. As
before, one is led to consider the two regimes, namely the
stationary regime �t
 t*�N�� and the growing regime
�1� t� t*�N��.

In the stationary regime the mean and the variance be-
come time-independent and they increase logarithmically
with N for large N. The mean behaves as


nc�N�� � �i ln�N�, i = I,II,III, �25�

where the universal prefactor �i depends on the three classes
of ��V�,

�I =
1

2
,

�II =
� − 2

2� − 3
, �26�

and

�III =
� + 2

2� + 3
.

Similarly, the variance in the stationary regime, for large N,
behaves as


nc
2�N�� − 
nc�N��2 � �i ln�N�, i = I,II,III, �27�

where

�I =
1

4
,

�II =
�� − 2��2�2 − 6� + 5�

�2� − 3�3 , �28�

and

�III =
�� + 2��2�2 + 6� + 5�

�2� + 3�3 .

The above results were first derived analytically in Ref. �21�
using a different method. This paper thus provides an alter-
native derivation.

In the growing regime, we show that the mean number of
collisions increases logarithmically with t,


nc�t�� � �i ln�n0t�, i = I,II,III. �29�

The universal prefactor �i is characteristic to each of the
classes of the parent-distribution ��V�, namely

�I =
1

2
,

�II =
� − 1

2� − 3
, �30�

and

�III =
� + 1

2� + 3
.

Moreover, as discussed in Sec. IV, one can also infer the
variance of the number of collisions,


nc
2�t�� − 
nc�t��2 � �i ln�n0t�, i = I,II,III, �31�

where

�I =
1

4
,

�II =
�� − 1��2�2 − 6� + 5�

�2� − 3�3 ,

and

�III =
�� + 1��2�2 + 6� + 5�

�2� + 3�3 . �32�

The fact that 
nc
2�t��− 
nc�t��2� 
nc�t�� indicates, contrary to

previous claims �33�, that the collision process in the ther-
modynamic limit of the Jepsen gas is not Poissonian.

III. VELOCITY DISTRIBUTION FUNCTION OF THE
LEADER

A. General relations

In order to establish the characteristics of the leader’s sto-
chastic dynamics, we shall follow the type of reasoning and
the convenient notations of Ref. �32�. Recall that the par-
ticles simply exchange velocities upon collisions and cannot
move across each other; therefore at any time t the leader
rides the instantaneous rightmost trajectory among the free
trajectories �Xi+Vit , i=0,1 , . . . ,N	. As the number of par-
ticles on the left-hand side of the leader is a conserved quan-
tity, we can identify this instantaneous trajectory �Xp+Vpt� of
the leader by imposing

�
i=0,i�p

N

��Xp + Vpt − Xi − Vit� = N , �33�

� being the Heaviside step function.
These elements are sufficient to find the conditional prob-

ability distribution of the leader PL�X ,V , t �V0� at time t
0
as

PL�X,V,t�V0� =��
p=0

N

��X − Xp − Vpt���V − Vp�

� �Kr�N, �
i=0,i�p

N

��Xp + Vpt − Xi − Vit��� ,

�34�

where the brackets 
¯� denote averaging over the initial po-
sitions and velocities of the gas particles in �−L ,0�. The ini-
tial condition is obviously

PL�X,V,t = 0�V0� = ��X���V − V0� . �35�

As shown in Appendix A, one finds
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PL�X,V,t�V0� = �
�

dz

2�iz
�A�z,X/t�L/t��N

� ���X − Vt���V − V0�

+ n0��V���Vt − X���X − Vt + L�

�
1 + �z − 1���V0t − X�

A�z,X/t�L/t� � . �36�

Here � is the unit-circle in the complex z-plane, and

A�z,X/t�L/t� = 1 + �z − 1���
�L+X�/t

	

dU��U�

+
t

L
�

X/t

�L+X�/t

dU�U −
X

t
���U� , �37�

and n0=N /L is the initial density. One can also check the
normalization of PL�X ,V , t �V0�, see Appendix A.

We now focus on the growing regime, i.e., we fix the time
t and take the thermodynamic limit L→	, N→	 at constant
n0. One finds then for the conditional probability distribution
of the leader

P�X,V,t�V0� = �
�

dz

2�iz

�exp�n0t�z − 1��
X/t

	

dU�U −
X

t
���U�

� ���X − V0t���V − V0� + n0��V���Vt − X�

� �1 + �z − 1���V0t − X��	 . �38�

Introducing the function

��W� � �
W

	

dU�U − W���U� , �39�

one finally obtains:

P�X,V,t�V0� = e−n0t��V0���X − V0t���V − V0�

+ n0��V�e−n0t��X/t���Vt − X���X − V0t� .

�40�

This result has a simple physical interpretation, based on a
“flux argument.” Let V be the instantaneous velocity of the
leader at time t. The leader’s trajectory can get bypassed only
by the trajectories with higher initial velocities U
V; then
the rate at which the trajectory of the leader gets bypassed is
proportional to the flux of particle trajectories of slopes
higher than V. This flux is clearly proportional to the particle
density n0 and to the relative velocity �U−V���U−V�. There-
fore n0��V�=n0�V

	dU�U−V���U� represents the total instan-
taneous rate at which the leader’s trajectory with velocity V
gets bypassed by other trajectories.

The first term on the right-hand side �rhs� of Eq. �40�
represents the probability that the leader’s trajectory has
never been bypassed until time t. One notices that this prob-
ability is exponentially decreasing with time. In this case, the

final velocity is V0 and the final position is V0t, thus explain-
ing the two � factors. Indeed, as seen above, in an infinitesi-
mal time dt the trajectory of the leader with velocity V0 gets
hit with probability n0��V0�dt, and so it does not get hit with
probability 1−n0��V0�dt. As such, the probability for the
leader to keep its initial trajectory until time t is
�1−n0��V0�dt�t/dt→exp�−n0t��V0��.

Let us turn now to the second term of the rhs of Eq. �40�,
which takes into account all the situations when the velocity
of the leader got modified through collisions. The leader is at
X at time t, with velocity V. For this event to happen, no
trajectory must hit the straight line of slope X / t until time t,
see Fig. 3. All possible trajectories of the leader must lie
below this line, and �according to the argument above� this
happens with probability exp�−n0t��X / t��. Now, out of all
the trajectories satisfying this criterion, we are interested
only in those that actually hit the line of slope X / t exactly at
time t, and exactly with velocity V; this fraction is n0��V�.
Thus the total probability for the leader to be at X with ve-
locity V is n0��V�exp�−n0t��X / t�� �the two � functions are
obvious�.

The conditional coordinate distribution for the leader is
obtained by integrating P�X ,V , t �V0� over V:

P�X,t�V0� = e−n0t��V0���X − V0t� + n0e−n0t��X/t�

��
X/t

	

dV��V���X − V0t�

=
�

�X
�e−n0t��X/t���X − V0t�	 , �41�

and a detailed discussion of its long-time properties, corre-
sponding to the diffusive regime for the particle, can be
found in Ref. �27�.

We now consider exclusively the stochastic behavior of
the velocity of the leader. The conditional velocity distribu-
tion is obtained by integrating P�X ,V , t �V0� over X:

P�V,t�V0� = e−n0t��V0���V − V0� + n0t��V�

��
V0

V

dWe−n0t��W���V − V0� . �42�

Moreover, by averaging over the initial velocity V0 of the

x

t
0

V
0

X

slope

V

. .
.

X/t

FIG. 3. Illustration of the “flux argument” in deducing the con-
ditional probability distribution function P�X ,V , t �V0� of the leader
in the thermodynamic limit �see the main text�.
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leader, one obtains the velocity distribution:

P�V,t� = �
0

	

dV0��V0�P�V,t�V0�

= ��V�e−n0t��V� + n0t��V��
0

V

dV0��V0�

��
V0

V

dWe−n0t��W�. �43�

Based on the properties of the function ��W� �see Appendix
B�, one finally reaches an expression that proves to be more
convenient for further analysis,

P�V,t� = ��V�e−n0t� + n0t��V��
0

V

dWe−n0t��W�. �44�

Here �
0 is the first moment of ��V�,

� = �
0

	

dVV��V� . �45�

B. Long-time behavior of P„V , t…

Let us inspect Eq. �44� in the limit t� �n0��−1. The first
term on the rhs is exponentially decreasing in time, so it can
be neglected in this long-time limit. In the second term, due
to the presence of the exponential exp�−n0t��W��, the main
contribution to the integral will come from the W sector for
which ��W� is small; in view of the property �i� in Appendix
B, this happens for large values of W, so one can write with
a good approximation

P�V,t� � n0t��V��
0

	

dW exp�− n0t�as�W�� . �46�

Here “as” designates the asymptotic, large-W behavior of
��W�, which, in view of the definition �39�, is determined by
the asymptotic behavior of ��V�. We are thus led to consider
the tail of the distribution ��V�, according to the three
classes discussed in Sec. II.

Class I, Eq. (3). In this case one finds

�as�W� �
A
�2W�+2�1−�� exp�− W�� . �47�

As shown in Appendix C, this leads to the scaling form �2�
with the scaling function FI in Eq. �7� and the scaling param-
eters �6�.

Class II, Eq. (10). One has

�as�W� �
B

�� − 1��� − 2�
1

W�−2 . �48�

Introducing it in Eq. �46� and using a simple change of vari-
able

� n0tB
�� − 1��� − 2�−1/��−2�

V = z , �49�

one obtains the scaling form �2� with FII
� as in Eq. �15� and

the scaling parameters �13�.
Class III, Eq. (18). Finally, for distributions with finite

support ��V� one has

�as�W� �
C

�� + 1��� + 2�
�Vc − W��+2, W � Vc. �50�

The change of variable

� n0tC
�� + 1��� + 2�1/��+2�

�Vc − W� = − z �51�

leads to the scaling form �2� with FIII
� given by Eq. �22� and

the scaling parameters in Eq. �21�.

C. Mean velocity of the leader

Using Eq. �43� and the properties �B3�–�B6� of ��V�, fol-
lowed by a double integration by parts, the mean velocity of
the leader can be written as


V�t�� = �
0

	

dVVP�V,t�

= �e−n0t� + n0t�
0

	

dV���V� − V
d��V�

dV
e−n0t��V�,

�52�

or, with a change of variable

Z = n0t��V� �53�

the above integral becomes


V�t�� = �e−n0t� + �
0

n0t�

dZ� ��V�
�d��V�/dV�

+ V�e−Z. �54�

The quantity � ��V�

�d��V�/dV� +V� has to be expressed as a function

of Z using Eq. �53�.
In the long-time limit of t� �n0��−1, the first term on the

rhs of Eq. �54� becomes negligible, and the dominant contri-
bution to the integral in the second term comes only from the
large-V sector. Therefore


V�t�� � n0t�
0

	

dZ� �as�V�
�d�as�V�/dV�

+ V�e−Z, �55�

with Z=n0t�as�V�, so the long-time behavior of the mean
velocity is determined by the tail of the parent distribution
��V�. Therefore its expression is the same for all the distri-
bution ��V� belonging to one of the three classes described
above, and is given, respectively, by Eqs. �9�, �17�, and �24�
above.

Note that these long-time expressions of the mean leader
velocity can also be obtained directly by using the specific
scaling forms �2� of P�V , t�.
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IV. COLLISION STATISTICS

A. Growing regime

We are interested in the statistics of the number of colli-
sions nc that the leader undergoes until time t in the growing
regime. As before, we then fix the time t and take first the
thermodynamic limit N→	, L→	 keeping the density n0
fixed. If V is the leader’s velocity at time t, then the prob-
ability that it undergoes one collision in the small interval dt
is n0��V�dt, see Sec. III A. Taking the average over the dis-
tribution P�V , t� of V, one obtains

d
nc�t��
dt

= n0�
0

	

dV��V�P�V,t� = n0
��V�� . �56�

The long-time behavior is obtained by considering in the
above equation the asymptotic form �2� of P�V , t�. One no-
tices that the most important contribution to the integral over
V comes from the region V�ai�t�, i=I , II , III. For the three
classes of parent distributions ��V� one obtains, respectively,

Class I.

d
nc�t��
dt

� n0�
0

	

dV
A
�2V�+2−2�e−V� 1

bI�t�
FI�V − aI�t�

bI�t�
�

�
1

t�2�
0

	

dV exp�− V� + �� + 2 − 2��ln V

+ ln�n0tA��
1

bI�t�
FI�V − aI�t�

bI�t�
�

�
1

t
�

−	

	

dze−zFI�z� �
1

2t
. �57�

Class II.

d
nc�t��
dt

�
1

t
�

0

	

dzz2−�FII
��z� � � � − 1

2� − 3
�1

t
. �58�

Class III.

d
nc�t��
dt

�
1

t
�

−	

0

dz�− z��+2FIII
� �z� � � � + 1

2� + 3
�1

t
. �59�

These results lead obviously to the �ln�n0t� asymptotic
growth of 
nc�t��, as described by Eqs. �29� and �30�.

The mean square number of collisions until time t is given
by the following integral expression:


nc
2�t�� = 2�

0

t

dt1�
t1

t

dt2�
0

	

dV1�
V1

	

dV2�
V1

V2

dU

� n0�U − V1���U�P�V2,t2�U,t1�n0��V2� . �60�

The kernel of this fivefold integral corresponds to �i� having
one collision in the interval dt1 around t1, provided that the
leader has velocity V1 at t1; �ii� as a result of this first colli-
sion, an instantaneous change in the leader’s velocity from
V1 to U
V1; and �iii� a second collision in the interval dt2
around t2, provided that the leader has velocity V2U at t2
�t2
 t1� and that it had the velocity U at t1

+. The correspond-
ing conditional probability density P�V2 , t2 �U , t1� can be eas-

ily computed using Eq. �40� and integrating over the spatial
coordinates, and it is found to be

P�V2,t2�U,t1� = e−n0�t2−t1���U���V2 − U�

+ n0�t2 − t1���V2��
U

V2

dWe−n0�t2−t1���W�

���V2 − U� . �61�

Finally, one has to average over all the realizations of the
leader’s trajectory that fulfills conditions �i�–�iii�.

From Eqs. �60�, �61�, �29�, and �30�, one can infer the
long-time behavior �ln�n0t� of the variance of nc, as resumed
in Eqs. �31� and �32�. This calculation is rather tedious and
we have carried it out explicitly only in a special case when
��V�=exp�−V� �see Sec. V�. However, the results for other
cases can be inferred by matching the late-time growing re-
gime results with that of the stationary regime results derived
in Ref. �21� at the crossover time t= t*�N�. This is explained
in detail in Sec. IV B.

B. Stationary regime and the crossover time

As already mentioned in the Introduction, the Jepsen gas
for a finite N is completely equivalent to the model of an
evolutionary dynamics for a quasispecies model introduced
in �19,20�. The collision statistics of the leader in the station-
ary regime has been studied before both numerically �19,20�
and analytically �21�, and the results in Eqs. �25� and �27�
were derived. Here we will derive these results through a
different method that will also allow us to estimate the cross-
over time t*�N� for the three classes of ��V�.

Recall that the crossover time t*�N� is the time at which
the leader aquires its final, maximum velocity. So, at
t= t*�N� the typical time-dependent velocity of the leader in
the growing regime matches with the typical value of
Vmax=max�V0 ,V1 , . . . ,VN�. To estimate Vmax,typ, we recall
that the Vi’s are i.i.d random variables each drawn from
��V�, and therefore for N�1:

Prob�Vmax � V� = �
i=0

N

Prob�Vi � V� = ��
0

V

dU��U�N+1

= �1 − �
V

	

dU��U�N+1

� exp�− N�
V

	

dU��U�
= exp�N���V�� , �62�

where the function ��z� is defined in Eq. �39�.
Class I. In this case, Eq. �62� generates the cumulative of

the Fisher-Tippett-Gumbel PDF,

Prob�Vmax � V� � exp�− exp�−
V − ãI�N�

b̃I�N�
� , �63�

where ãI�N� and b̃I�N� are given in Eq. �4�. So in this case
the typical value of Vmax is Vmax,typ� ãI�N�. On the other
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hand, as indicated by Eqs. �2�, �6�, and �9�, the typical leader
velocity at time t is roughly Vtyp�t��aI�t�. Matching
Vmax,typ=Vtyp�t*�N�� gives the crossover time

t*�N� �
�

n0
N . �64�

Class II. In this case, one obtains the cumulative of the
Fréchet PDF,

Prob�Vmax � V� � exp�−
NB

� − 1
V1−� , �65�

and hence

Vmax,typ � N1/��−1�. �66�

On the other hand, according to Eqs. �2�, �13�, and �17�, the
typical leader velocity

Vtyp�t� � � Bn0t

�� − 1��� − 2�1/��−2�

. �67�

Then the crossover time is estimated as

t*�N� � N��−2�/��−1�. �68�

Class III. Finally, one has in this case the cumulative of
the Weibull PDF,

Prob�Vmax � V� � exp�−
NC

� + 1
�Vc − V��+1 , �69�

indicating

Vc − Vmax,typ � N−1/��+1�. �70�

The typical leader velocity is given, through Eqs. �2�, �21�,
and �24�, by

Vc − Vtyp�t� � � Cn0t

�� + 1��� + 2�−1/��+2�

, �71�

and thus the crossover time is

t*�N� � N��+2�/��+1�. �72�

Substituting Eqs. �64�, �68�, and �72� in Eq. �29�, one can
then compute the saturation value of the mean collision num-
ber 
nc

*�N��= 
nc�t= t*�N��� as a function of N as stated in Eq.
�25�. We thus recover, through this alternative method, the
results derived in Ref. �21�.

Concerning the variance, the results in Eqs. �27� and �28�
for the stationary regime were derived exactly in Ref. �21�.
In order that the variance in the growing regime matches
with that in the stationary regime at the crossover time
t= t*�N�, it follows immediately that in the growing regime
the variance at late times must behave as in Eqs. �31� and
�32�. We have verified this prediction by direct calculation
for the special case ��V�=exp�−V� �see the next section�.
However, although desirable, a direct calculation of the vari-
ance in the growing regime for the other cases, using the
method outlined in the previous section, seems too tedious.

V. EXACT RESULTS FOR ALL TIME IN A SPECIAL CASE

A particular example that can be studied in full analytical
detail for all t is

��V� = e−V �V  0� , �73�

which pertains to Class I with �=1. By straightforward cal-
culations one obtains from Eqs. �44�, �52�, and �56�, respec-
tively, the following.

�i� The probability distribution function for the velocity of
the leader

P�V,t� = e−�n0t+V� + n0te−V�Ei�− n0t� − Ei�− n0te−V�� ,

�74�

with the scaling form �2� corresponding to the function �7�
with the parameters

aI�t� = ln�n0t�, bI = 1. �75�

�ii� The mean velocity is therefore


V�t�� = ln�n0t� + 1 + C − Ei�− n0t� , �76�

which for long times is dominated by the logarithmic term.
�iii� The mean value of the number of collisions the leader

undergoes until time t:


nc�t�� =
1

2
�ln�n0t� + C − Ei�− n0t�� , �77�

with the logarithmic asymptotic increase.
�iv� Finally, the calculation of the variance of the number

of collisions is rather lengthy �see Appendix D�, but its long-
time behavior is simply given by


nc
2�t�� − 
nc�t��2 �

1

4
ln�n0t� , �78�

in agreement with Eqs. �31� and �32�.

VI. CONCLUSIONS

In this paper we have studied the extremal dynamics in a
one-dimensional Jepsen gas of �N+1� particles, initially con-
fined in a box �−L ,0� with uniform density and with each
particle having an independently distributed initial positive
velocity drawn from an arbitrary distribution ��V�. We have
computed analytically the velocity distribution of the leader
�or the rightmost particle� at time t, and also the mean and
the variance of the number of collisions undergone by the
leader up to time t. We have shown that for a given N�1,
there is a crossover time t*�N� that separates a stationary
regime �t
 t*�N�� from a growing regime �1� t� t*�N��.
While in the stationary regime, the leader velocity becomes
time-independent and follows the standard extremal laws of
i.i.d random variables, it has an entirely different universal
scaling behavior in the growing regime. The associated scal-
ing functions in the growing regime belong to three different
universality classes depending only on the tail of ��V�, and
they have been computed explicitly in Eqs. �7�, �15�, and
�22�. These dynamical extremal scaling functions are mani-
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festly different from the standard EVS scaling functions of
i.i.d random variables.

Similarly, we have shown that in the growing regime, the
mean and the variance of the number of collisions of the
leader up to time t increases logarithmically with t, with
universal prefactors that were computed explicitly in Eqs.
�30� and �32�. Also, as a by-product, we have provided an
alternate derivation of the stationary regime results for the
collision statistics �the mean and the variance� of the leader
that were obtained in �21� through a completely different
approach. While in this paper we were able to compute only
the mean and the variance of the number of collisions, it
would be interesting to obtain the full distribution of the
number of collisions up to time t, and to compare it with the
previously incorrectly suggested Poisson distribution �33�,
which remains a challenging open problem.

We have computed here the velocity distribution and the
statistics of the number of collisions separately in the grow-
ing regime and in the stationary regime. It would be interest-
ing to obtain the exact crossover functions that interpolate
between the two regimes. For example, for the velocity dis-
tribution of the leader this crossover scaling function can, in
principle, be computed from our general result in Eq. �36�,
which is valid for all times t and all values of N.

The model studied here can also be considered as a simple
toy model of biological evolution �19–21�, on which some
results, numerical and analytical, were known before but
they were mostly restricted to the stationary regime �19–21�.
For example, the number of overtaking events of the leader,
i.e., the number of punctuation events until the emergence of
the best fitted species were studied before �19–21�. However,
the authors in Ref. �20� also studied analytically the distribu-
tion of the “label” of the fittest species in the growing re-
gime, and by matching the typical leader’s label at time t

with that of the final leader, they were able to extract the
crossover time t*�N�. In this paper, we have studied a
complementary quantity in the growing regime, namely the
distribution of the “fitness” �velocity� of the fittest species.
The crossover times t*�N� extracted from both of these dis-
tributions are in agreement with each other. The method pre-
sented in this paper may also be useful to study the dynamics
of other interesting observables in the context of biological
evolution, such as, for example, the persistence of the leader
genotype, and the distribution of the time interval between
two successive punctuation events.
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APPENDIX A: DERIVATION OF EQ. (36) AND THE
NORMALIZATION OF PL„X ,V , t �V0…

We present below the main steps of the derivation of Eq.
�36�, see also �32�. In order to pursue the calculations, it is
convenient to use the following integral representation of the
Kronecker delta:

�Kr�p,q� = �
�

dz

2�iz
zp−q, �A1�

where p ,q are integers, and � is the unit circle centered at
the origin in the complex z plane. Using this representation
in Eq. �34�, it results in

PL�X,V,t�V0� =��
p=0

N

��X − Xp − Vpt���V − Vp��
�

dz

2�iz
zN � �

j=0,j�p

N

z−��Xp+Vpt−Xj−Vjt��
= �

�

dz

2�iz
zN���X − V0t���V − V0���

j=1

N

z−��V0t−Xj−Vjt��
+��

p=1

N

��X − Xp − Vpt���V − Vp�z−��Xp+Vpt−V0t� �
j=1,j�p

N

z−��Xp+Vpt−Xj−Vjt��� . �A2�

Here ��¯� is the Heaviside unit step function. Due to the initial statistical independence of the particles, one has

��
j=1

N

z−��V0t−Xj−Vjt�� = 
z−��V0t−Xj−Vjt��N = 
z−��X−Xj−Vjt��N, �A3�

where the last equality results because of the factor ��X−V0t� in the corresponding term of Eq. �A2�. Also

��
p=1

N

��X − Xp − Vpt���V − Vp�z−��Xp+Vpt−V0t� �
j=1,j�p

N

z−��Xp+Vpt−Xj−Vjt��
= N
��X − Xp − Vpt���V − Vp��z−��X−V0t� � 
z−��X−Xj−Vjt��N−1. �A4�

One has to compute then
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z−��X−Xj−Vjt�� =
1

L
�

−L

0

dXj�
0

	

dVj��Vj�z−��X−Xj−Vjt� =
1

L
�

−L

0

dXj�z−1�
0

�X−Xj�/t

dVj��Vj� + �
�X−Xj�/t

	

dVj��Vj�
= z−1 + �1 − z−1�

1

L
�

−L

0

dXj�
�X−Xj�/t

	

dVj��Vj� = z−1 + �1 − z−1���
�X+L�/t

	

dVj��Vj� +
1

L
�

X/t

�X+L�/t

dVj��Vj��Vjt − X�
� z−1A�z,X/t�L/t� , �A5�

where A�z ,X / t �L / t� is given by Eq. �37�. Note also that


��X − Xp − Vpt���V − Vp�� =
1

L
�

−L

0

dXp�
−	

	

dVp��Vp���X − Xp − Vpt���V − Vp� =
1

L
�

−L

0

dXp��X − Xp − Vt���V�

=
1

L
��V���Vt − X���X − Vt + L� , �A6�

and also

z−��X−V0t� = z−1 + �1 − z−1���V0t − X�

= z−1�1 + �z − 1���V0t − X�� . �A7�

Finally, replacing the results �A3�–�A7� in Eq. �A2�, one ob-
tains the expression �36� of the conditional probability den-
sity for the leader’s coordinate and velocity. One can also
check the normalization of this one. Indeed, consider

N = �
−	

	

dX�
−	

	

dVPL�X,V,t�X0 = 0,V0�

= �
�

dz

2�iz��A�z,V0�L/t��N +
N

L
�

−	

	

dX�
X/t

�X+L�/t

dV��V�

��A�z,X/t�L/t��N−1�1 + �z − 1���V0t − X���
= �A�0,V0�L/t��N +

N

L
�

−	

	

dX�
X/t

�X+L�/t

dV��V�

��A�0,X/t�L/t��N−1��X − V0t� , �A8�

where for the last equality we used the theorem of residues.
But

�

�X
�A�0,V0�L/t��N =

N

L
�A�0,X/t�L/t��N−1�

X/t

�X+L�/t

dU��U� ,

�A9�

and therefore

N = �A�0,V0�L/t��N + �
−	

	

dX��X − V0t�
�

�X
�A�0,X/t�L/t��N

= �A�0,V0�L/t��N + �
V0t

	

dX
�

�X
�A�0,X/t�L/t��N

= lim
X→	

�A�0,X/t�L/t��N = 1, �A10�

which proves the normalization of PL�X ,V , t �V0�.

APPENDIX B: PROPERTIES OF THE FUNCTION �„W…

Starting from its definition �39�, one can easily obtain the
following properties of the function ��W�:

�i� ��W� is a strictly decreasing function of W and

�ii� ��W� = � − W for W � 0. �B1�

In particular,��0� = �, the first moment of ��V� .

�B2�

�iii� ��W� → 0 for W → 	 . �B3�

�iv� ��W� → − 	 for W → − 	 . �B4�

�v�
d��W�

dW
= − �

W

	

dU��U� .

Note�d��W�
dW

�
W=0

= − 1. �B5�

�vi�
d2��W�

dW2 = ��W� . �B6�

Using these relations, one can easily obtain Eq. �44� from
Eq. �43�.

APPENDIX C: THE SCALING BEHAVIOR OF P„V , t… FOR
THE CLASS I OF PARENT DISTRIBUTIONS �„V…

With the expression �47� of �as, one finds from Eq. �46�

P�V,t� � n0tAV�e−V��
0

V

dWe−eS�W�
, �C1�

where

S�W� = W� − ln�n0tA/�2� − �� + 2 − 2��ln W . �C2�

Consider
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W = aI�t� + y , �C3�

where y is small compared to aI�t�. Then

S�aI�t� + y� = �aI�t��� − ln�n0tA/�2� − �� + 2 − 2��ln aI�t�

+ � �

�aI�t��1−� −
�� + 2 − 2��

aI�t�
y + O�y2� .

�C4�

Set

�aI�t��� − ln�n0tA/�2� − �� + 2 − 2��ln aI�t� = 0, �C5�

so, to leading order for large t:

�aI�t��� � ln�n0tA/�2� + �� + 2 − 2��/�ln ln�n0tA/�2� ,

�C6�

and thus

aI�t� � �ln�n0tA/�2��1/�. �C7�

Then

S�W = aI�t� + y� =
W − aI�t�

bI�t�
, �C8�

where

bI�t� �
1

�
�ln�ntA/�2���1−��/�. �C9�

Now, from Eq. �C1�,

P�V,t� � n0tbI�t�AV�e−V��
0

V

dWe−�W−aI�t��/bI�t�

� bI�t�exp�− V� + ln�n0tA� + � ln V��
−	

z

dUe−e−U
,

�C10�

where z= �V−aI�t�� /bI�t�. One has

exp�− V� + ln�n0tA� + � ln V� �
1

bI
2�t�

e−z, �C11�

and thus obtains finally Eq. �2� for case I.

APPENDIX D: THE MEAN SQUARE DEVIATION OF nc„t…
FOR �„V…=exp„−V…

Using Eqs. �60� for computing 
nc
2�t��, for the particular

case of ��V�=exp�−V��V0� one has ��V�=exp�−V�,
P�V , t� given by Eq. �74�, and the conditional velocity distri-
bution function �61�

P�V2,t2�U,t1� = e−n0�t2−t1�e−V2��V2 − U� + n0�t2 − t1�e−V2

��Ei„− n0�t2 − t1�e−U
… − Ei„− n0�t2 − t1�e−V2

…�

���V2 − U� . �D1�

Then, after lengthy calculations, Eq. �60� leads to


nc
2�t�� =

1

8
ln2�n0t� + �C

2
+

1

4
�ln�n0t� −

3

2n0t
− 2Ce−n0t

−
e−n0t

2n0t
+ �7

4
−

C

2
�Ei�− n0t� − ln�n0t�Ei�− n0t�

+ 2e−n0t Ei�− n0t� + �9C

4
+

C2

2
+

�2

12
� + J , �D2�

where

J =
1

2
P�

0

n0t d�

�
�e−n0�Ei„− n0�t − ��… + Ei�− n0��� . �D3�

Here P designates the principal part of the above integral.
In the long-time limit n0t�1, the main contribution to the

value of 
nc
2�t�� comes from the logarithmic terms,


nc
2�t�� �

1

8
ln2�n0t� + �C

2
+

1

4
�ln�n0t� . �D4�

Combining this result with the expression �77� of 
nc�t��, one
obtains finally the asymptotic result �78�.

�1� J. P. Bouchaud and M. Mézard, J. Phys. A 30, 7997 �1997�.
�2� K. Johansson, Commun. Math. Phys. 209, 437 �2000�.
�3� S. N. Majumdar and P. L. Krapivsky, Phys. Rev. E 62, 7735

�2000�.
�4� D. S. Dean and S. N. Majumdar, Phys. Rev. E 64, 046121

�2001�.
�5� S. T. Bramwell, P. C. W. Holdsworth, and J. F. Pinton, Nature

�London� 396, 552 �1998�.
�6� P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett. 85,

5492 �2000�.
�7� S. N. Majumdar and P. L. Krapivsky, Phys. Rev. E 65, 036127

�2002�; S. N. Majumdar, ibid. 68, 026103 �2003�.
�8� For a review of extreme value statistics and traveling fronts,

see S. N. Majumdar and P. L. Krapivsky, Physica A 318, 161
�2003�.

�9� T. Antal, M. Droz, G. Gyorgyi, and Z. Rácz, Phys. Rev. Lett.
87, 240601 �2001�.

�10� G. Gyorgyi, P. C. W. Holdsworth, B. Portelli, and Z. Rácz,
Phys. Rev. E 68, 056116 �2003�.

�11� C. J. Bolech and A. Rosso, Phys. Rev. Lett. 93, 125701
�2004�.

�12� H. Guçlu and G. Korniss, Phys. Rev. E 69, 065104�R� �2004�.
�13� S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 92, 225501

�2004�.
�14� S. N. Majumdar and A. Comtet, J. Stat. Phys. 119, 777 �2005�.
�15� G. Gyorgyi, N. R. Moloney, K. Ozogany, and Z. Rácz, e-print

cond-mat/0610463.
�16� G. D’Anna et al., Europhys. Lett. 61, 60 �2003�.
�17� P. L. Krapivsky and S. Redner, Phys. Rev. Lett. 89, 258703

�2002�; E. Ben-Naim and P. L. Krapivsky, Europhys. Lett. 65,

IOANA BENA AND SATYA N. MAJUMDAR PHYSICAL REVIEW E 75, 051103 �2007�

051103-12



151 �2004�.
�18� S. J. Gould and N. Eldredge, Nature �London� 366, 223

�1993�.
�19� J. Krug and C. Karl, Physica A 318, 137 �2003�.
�20� K. Jain and J. Krug, J. Stat. Mech.: Theory Exp. � 2005�

P04008. For a review of the evolutionary aspects see e-print
q-bio.PE/0508008, Genetics �to be published�, and also e-print
q-bio.PE/0606025, Structural Approaches to Sequence Evolu-
tion: Molecules, Networks, Population, edited by U. Bastolla,
M. Porto, H. E. Roman, and M. Vendruscolo �Springer-Verlag,
Berlin, to be published�.

�21� C. Sire, S. N. Majumdar, and D. S. Dean, J. Stat. Mech.:
Theory Exp. �2006�, L07001.

�22� E. J. Gumbel, Statistics of Extremes �Columbia University
Press, New York, 1958�.

�23� S. Coles, An Introduction to Statistical Modeling of Extreme
Values �Springer-Verlag, London, 2001�.

�24� H. L. Frisch, Phys. Rev. 104, 1 �1956�.
�25� E. Teramoto and C. Suzuki, Prog. Theor. Phys. 14, 411 �1955�.

�26� D. W. Jepsen, J. Math. Phys. 6, 405 �1965�.
�27� J. L. Lebowitz and J. K. Percus, Phys. Rev. 155, 122 �1967�.
�28� J. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev. 171, 224

�1968�.
�29� H. P. McKean, J. Math. Phys. 8, 547 �1967�.
�30� V. Protopopescu and T. Keyes, Physica A 132, 421 �1985�.
�31� J. Piasecki and Ch. Gruber, Physica A 265, 463 �1999�.
�32� J. Piasecki, J. Stat. Phys. 104, 1145 �2001�.
�33� V. Balakrishnan, I. Bena, and C. Van den Broeck, Phys. Rev. E

65, 031102 �2002�.
�34� V. Balakrishnan and C. Van den Broeck, Phys. Rev. E 72,

046141 �2005�.
�35� I. Bena, C. Van den Broeck, and R. Kawai, Europhys. Lett. 71,

879 �2005�.
�36� S. Sachdev and K. Damle, Phys. Rev. Lett. 78, 943 �1997�.
�37� S. Sachdev and A. P. Young, Phys. Rev. Lett. 78, 2220 �1997�.
�38� I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series,

and Products �Academic Press, New York, 1980�.

UNIVERSAL EXTREMAL STATISTICS IN A FREELY… PHYSICAL REVIEW E 75, 051103 �2007�

051103-13


